
INTRODUCTION TO 

TRANSACTION 

PROCESSING 

CHAPTER 21 (6/E) 

CHAPTER 17 (5/E) 



CHAPTER 21 OUTLINE 

 Introduction to Transaction Processing 

 Desirable Properties of Transactions 

 Transaction Support in SQL 

 

2
 



DEFINITIONS 

 Transaction: an executing program (process) that includes one or 
more database access operations 

• A logical unit of database processing 

• Example from banking database: Transfer of $100 dollars from a 
chequing account to a savings account 

• Characteristic operations 

• Reads (database retrieval, such as SQL SELECT) 

• Writes (modify database, such as SQL INSERT, UPDATE, DELETE) 

 Note: Each execution of a program is a distinct transaction with 
different parameters 

• Bank transfer program parameters: savings account number, 
chequing account number, transfer amount 

 Transaction Processing (OLTP) Systems: Large multi-user 
database systems supporting thousands of concurrent transactions 
(user processes) per minute 

3
 



TRANSACTION PROCESSING MODEL 

 Simple database model: 

• Database: collection of named data items 

• Granularity (size) of each data item immaterial 

• A field (data item value), a record, or a disk block 

• TP concepts are independent of granularity 

 Basic operations on an item X: 

• read_item(X): Reads a database item X into a program variable  

• For simplicity, assume that the program variable is also named X 

• write_item(X): Writes the value of program variable X into the 

database item named X 

 Read and write operations take some amount of time to execute 

4
 



COMPUTER STORAGE HIERARCHY 

5
 

program variables 

DB items 



READ AND WRITE OPERATIONS 

 Basic unit of data transfer from the disk to the computer main 
memory is one disk block (or page).  

 read_item(X) includes the following steps: 

1. Find the address of the disk block that contains item X. 

2. Copy that disk block into a buffer in main memory (if that disk 
block is not already in some main memory buffer). 

3. Copy item X from the buffer to the program variable named X. 

 write_item(X) includes the following steps: 

1. Find the address of the disk block that contains item X. 

2. Copy that disk block into a buffer in main memory (if it is not 
already in some main memory buffer). 

3. Copy item X from the program variable named X into its correct 
location in the buffer. 

4. Store the updated block from the buffer back to disk  

• either immediately or, more typically, at some later point in time  

6
 



BACK TO TRANSACTIONS 

 Transaction (sequence of executing operations) may be:  

• Stand-alone, specified in a high level language like SQL submitted 

interactively, or  

• More typically, embedded within application program 

 Transaction boundaries: Begin transaction and End transaction 

• Application program may include specification of several 

transactions separated by Begin and End transaction boundaries 

• Transaction code can be executed several times (in a loop), 

spawning multiple transactions 

7
 



TRANSACTION NOTATION 

 Focus on read and write operations 

• T1: b1; r1(X); w1(X); r1(Y); w1(Y); e1; 

• T2: b2; r2(Y); w2(Y); e2; 

 bi and ei specify transaction boundaries (begin and end) 

 i specifies a unique transaction identifier (Tid) 

• w5(Z) means transaction 5 writes out the value for data item Z 

 

8
 



MODES OF CONCURRENCY 

 Interleaved processing: concurrent execution of processes is 

interleaved on a single CPU 

 Parallel processing: processes are concurrently executed on 

multiple CPUs 

 

 

 

 

 

 

 Basic transaction processing theory assumes interleaving 

9
 



SCHEDULE 

 Sequence of interleaved operations from several transactions 

 

 

 

 

 

 

 

 

 

 

 

   b1; r1(s); b2; r2(c); w1(s); r1(c); w2(c); w1(c); e1; e2; 

 

 

 

 

 

 

1
0

 

at ATM window #1 at ATM window #2 

1 read_item(savings); 

2 savings = savings - $100; 

3 read_item(chequing); 

4 write_item(savings); 

5 read_item(chequing); 

6 chequing = chequing - $20; 

7 write_item(chequing); 

8 chequing = chequing + $100; 

9 write_item(chequing); 

10 dispense $20 to customer; 



WHAT CAN GO WRONG? 

 Consider two concurrently executing transactions: 

 

 

 

 

 

 

 

 System might crash after transaction begins and before it ends. 

• Money lost if between 3 and 6 or between c and d 

• Updates lost if write to disk not performed before crash 

 Chequing account might have incorrect amount recorded: 

• $20 withdrawal might be lost if T2 executed between 4 and 6 

• $100 deposit might be lost if T1 executed between a and c 

• In fact, same problem if just 6 executed between a and c 

1
2

 

at ATM window #1 at ATM window #2 

1 read_item(savings); a read_item(chequing); 

2 savings = savings - $100; b chequing = chequing - $20; 

3 write_item(savings); c write_item(chequing); 

4 read_item(chequing); d dispense $20 to customer; 

5 chequing = chequing + $100; 

6 write_item(chequing); 



ACID PROPERTIES 

 Atomicity: A transaction is an atomic unit of processing; it is either 
performed in its entirety or not performed at all. 

 Consistency preservation: A correct execution of the transaction must 
take the database from one consistent state to another. 

 Isolation: Even though transactions are executing concurrently, they 
should appear to be executed in isolation – that is, their final effect 
should be as if each transaction was executed in isolation from start to 
finish. 

 Durability: Once a transaction is committed, its changes (writes) 
applied to the database must never be lost because of subsequent 
failure. 

 Enforcement of ACID properties: 

• Database constraint system (and application program correctness) 
responsible for C (introduced in previous classes) 

• Concurrency control responsible for I (more in next class) 

• Recovery system responsible for A and D (more in class after that) 

1
4

 



TRANSACTION SUPPORT IN SQL  

 A single SQL statement is always considered to  be atomic. 

• Either the statement completes execution without error or it fails 

and leaves the database unchanged.   

 No explicit Begin Transaction statement. 

• Transaction initiation implicit at first SQL statement and at next SQL 

statement after previous transaction terminates 

 Every transaction must have an explicit end statement 

• COMMIT: the DB must assure that the effects are permanent 

• ROLLBACK: the DB must assure that the effects are as if the 

transaction had not yet begun 

1
5

 



SAMPLE SQL TRANSACTION 

update_proc() { 

EXEC SQL WHENEVER SQLERROR GO TO error;   

EXEC SQL INSERT  

 INTO EMPLOYEE 

 VALUES ('Robert','Smith','991004321',2,35000);  

EXEC SQL UPDATE EMPLOYEE  

 SET SALARY = SALARY * 1.1 

 WHERE DNO = 2;    

EXEC SQL COMMIT;   

return(0);    

error:   /* continue if error on rollback */  

EXEC SQL WHENEVER SQLERROR CONTINUE;  

EXEC SQL ROLLBACK; 

return(1);    

} 

 

1
6

 



CHAPTER 21 SUMMARY 

 Transaction concepts 

 ACID properties for transactions 

 Transaction support in SQL 

 

1
7

 


